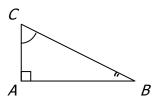
Cosinus et problèmes - retravailler les notions de 4e pour avancer sereinement en 3e avec le sinuset la tangente D'UN ANGLE AIGU

EXERCICE 1.


ABC est un triangle rectangle en A tel que AB= 6cm et BC = 7 cm.

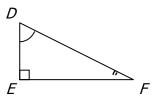
Calcul de la mesure de l'angle BC

 $\cos \widehat{ABC} = \frac{6}{7}$

 $\cos \widehat{ABC} = 0.857$ **ABC** ≈ **31°**

EXERCICE 2.

DEF est un triangle rectangle en E , DF= 15 cm et DE = 8 cm


Calcul de la mesure de l'angle EDF:

$$\cos \widehat{EDF} = \frac{DE}{DF}$$

 $\cos \widehat{EDF} = \frac{8}{15}$

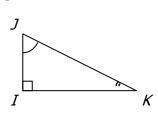
 $\cos \widehat{EDF} = 0.533$

 $\widehat{EDF} = 58^{\circ}$

EXERCICE 3.

IJK est un triangle rectangle en I tel que JK= 10cm et $\widehat{I}\widehat{I}\widehat{K} = 55^{\circ}$.

Calcul de la longueur de [IJ] :


$$\cos \widehat{IJK} = \frac{\widehat{JI}}{JK}$$

 $\cos 55 = \frac{JI}{10}$

 $0,574 = \frac{31}{10}$

 $0,574 \times 10 = JI$

JI ≈ 5,7 cm

EXERCICE 4.

LMN est un triangle rectangle en N tel que LM=11cm et \widehat{LMN} = 33°.

Calcul de la longueur de [MN]

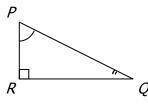
$$\cos \widehat{LMN} = \frac{MN}{ML}$$

 $\cos 33 =$

 $0.839 \times 11 = MN$

MN ≈ 9,2 cm

PQR est un triangle rectangle en R tel que PR=45cm et \widehat{QPR} = 53°.


Calcul de la longueur de [PQ] :

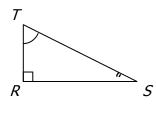
$$\cos \widehat{QPR} = \frac{PR}{PQ}$$

 $\cos 53 = \frac{1}{6}$

$$PQ = \frac{45}{0.602} \approx 74.8 \text{ cm}$$

EXERCICE 6.

RST est un triangle rectangle en R tel que RS=13,5cm et \widehat{RST} =25°.

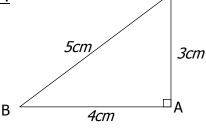

Calcul de la longueur de [ST] :

$$\cos \widehat{RST} = \frac{SR}{ST}$$

 $\cos 25 = \frac{13}{57}$

EXERCICE 7.

ABC est un triangle rectangle en A.


Calcul des mesures des angles \widehat{BC} et \widehat{CB} Calcul de l'angle \widehat{ABC} :

 $\cos \widehat{ABC} = \frac{BA}{BC}$

 $\cos \widehat{ABC} = \frac{7}{5}$

 $\cos \widehat{ABC} = 0.8$

ABC ≈ **37°**

Calcul de l'angle CB:

 $\cos \widehat{ACB} = \frac{CA}{BC}$

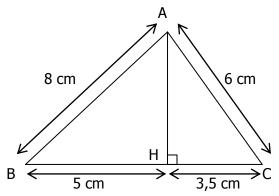
 $\cos \widehat{ACB} =$

 $\cos \widehat{ACB} = 0.6$ **ACB**≈ 53°

Ou bien : on utilise la propriété:

« La somme des angles d'un triangle vaut 180°, »

$$\widehat{ACB} + \widehat{ABC} + \widehat{CAB} = 180$$


$$\widehat{ACB}$$
 + 37 + 90 = 180

$$\widehat{ACB} = 180 - 90 - 37$$

 $\widehat{ACB} = 53^{\circ}$

EXERCICE 8.

Calculer les mesures des 3 angles de ce triangle :

Calcul de l'angle BC:

Dans le triangle ABH, rectangle en H, on a :

$$\cos \widehat{ABH} = \frac{BH}{BA}$$

$$\cos \widehat{ABH} = \frac{5}{8}$$

$$\cos \widehat{ABH} = 0,625$$

$$\widehat{ABH} \approx 51^{\circ}$$
Donc $\widehat{ABC} \approx 51^{\circ}$

Calcul de l'angle \widehat{CB} :

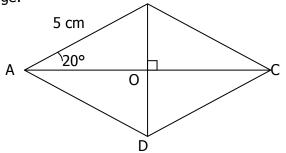
Dans le triangle ACH, rectangle en H, on a :

$$\cos \widehat{ACH} = \frac{CH}{CA}$$

$$\cos \widehat{ACH} = \frac{3,5}{6}$$

$$\cos \widehat{ACH} = 0,583$$

$$\widehat{ACH} \approx 54^{\circ}$$
Donc $\widehat{ACB} \approx 54^{\circ}$


Calcul de l'angle BAC:

D'après la propriété: « La somme des angles d'un triangle vaut 180° », dans le triangle ABC, on a :

$$\widehat{ACB} + \widehat{ABC} + \widehat{CAB} = 180$$

 $54 + 51 + \widehat{CAB} = 180$
 $\widehat{CAB} = 180 - 54 - 51$
 $\widehat{CAB} = 75^{\circ}$

EXERCICE 9.

Calcul de la longueur de la diagonale [AC] de ce losange: $B_{\underline{\ }}$

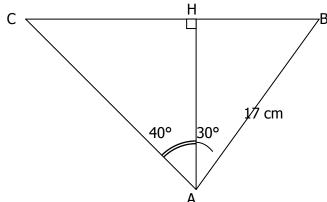
ABCD est un losange donc ses diagonales se coupent en leur milieu.

Donc O est le milieu de [AC]. Autrement dit : $AC = 2 \times AO$

Calcul de la longueur du segment [AO]:

Dans le triangle ABO, rectangle en O, on a :

$$\cos \widehat{BAO} = \frac{AO}{AB}$$


$$\cos 20 = \frac{AO}{5}$$

$$0,94 = \frac{AO}{5}$$

$$0,94 \times 5 = AO$$

$$AO \approx 4,7 \text{ cm}$$

EXERCICE 10.

a. Calcul de la longueur AH.

Dans le triangle ABH, rectangle en H, on a :

$$\cos \widehat{HAB} = \frac{AH}{AB}$$

$$\cos 30 = \frac{AH}{17}$$

$$0,866 = \frac{AH}{17}$$

$$0,866 \times 17 = AH$$

$$AH \approx 14,7 \text{ cm}$$

b. Calcul de la longueur BH.

Dans le triangle ABH, rectangle en H, on a :

$$\widehat{ABH} = 180 - 90 - 30$$

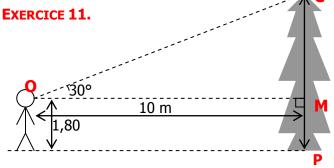
$$\widehat{ABH} = 60^{\circ}$$

$$\cos \widehat{ABH} = \frac{BH}{BA}$$

$$\cos 60 = \frac{BH}{17}$$

$$0.5 = \frac{BH}{17}$$

c. Calculer la longueur AC.


Dans le triangle ACH, rectangle en H, on a :

$$\cos \widehat{CAH} = \frac{AH}{AC}$$
 $\cos 40 = \frac{14,7}{AC}$
 $0,766 = \frac{14,7}{AC}$
 $AC = \frac{14,7}{0.766} \approx 19,2 \text{ cm}$

d. Calculer la longueur CH.

Dans le triangle ACH, rectangle en H, on a :

$$\widehat{ACH} = 180 - 90 - 40$$
 $\widehat{ACH} = 50^{\circ}$
 $\widehat{ACH} = \frac{CH}{CA}$
 $\widehat{COS} = \frac{CH}{19,2}$
 $0,643 = \frac{CH}{19,2}$
 $0,643 \times 19,2 = CH$
 $CH \approx 12,3$ cm

Un personnage mesurant 1,80m se trouve à 10m du pied d'un arbre. Alors qu'il regarde la cime, son regard fait un angle de 30° avec l'horizontale. Quelle est la hauteur de l'arbre?

La hauteur de l'arbre est égale à la longueur CP.

$$CP = CM + MP$$

On sait que MP = 1,80 m.

Calculons la longueur CM:

Dans le triangle CMO rectangle en M, on a :

$$\cos \widehat{\text{MCO}} = \frac{\text{CM}}{\text{CO}}$$

$$MCO = 180 - 90 - COM$$

 $MCO = 180 - 90 - 30$

$$\widehat{\text{MCO}} = 60^{\circ}$$

D'où :
$$\cos 60 = \frac{CM}{CO}$$

Pour calculer ainsi la longueur CM, on a donc besoin de connaître la longueur de l'hypoténuse, CO.

Calcul de CO:

$$\cos \widehat{MOC} = \frac{OM}{OC}$$

$$\cos \widehat{MOC} = \frac{10}{OC}$$

$$0,866 = \frac{10}{OC}$$

$$OC = \frac{10}{0,866}$$

$$OC \approx 11,5 \text{ m}$$

On reprend alors le calcul de CM:

$$\cos 60 = \frac{CM}{11,5}$$
 $0,5 = \frac{CM}{11,5}$
 $0,5 \times 11,5 = CM$
 $CM \approx 5,8 \text{ m}$
Finalement : $CP \approx 5,8 + 1,8 = 7,6 \text{ mètres}$.